
akiFlagger
Release 0.0.3

May 15, 2023

Contents

1 Introduction 3
1.1 Methods of calculating AKI . 3

2 Installation 5

3 Getting started 7
3.1 Let’s start off by creating some toy data. 7
3.2 Example: Rolling Minimum Window . 9
3.3 Example: Historical Baseline Trumping . 11
3.4 Example: Baseline Creatinine Imputation . 14

4 Additional Features and Common Use Cases 15
4.1 → Adding padding to the rolling window . 15
4.2 → Working with different column names . 16
4.3 → Adding in rolling window minimum creatinines . 17
4.4 → Adding in baseline creatinine . 18

5 More information 19

6 Introduction 21

7 Installation 23

8 Getting started 25
8.1 Let’s start off by generating some toy data. 25
8.2 Example: Rolling Minimum Window . 27
8.3 Example: Historical Baseline Trumping . 29
8.4 Example: Baseline Creatinine Imputation . 32

9 Using the GUI 33

10 Additional Features and Common Use Cases 35

11 More information 39

Index 41

i

ii

akiFlagger, Release 0.0.3

Contents 1

akiFlagger, Release 0.0.3

2 Contents

CHAPTER 1

Introduction

Acute Kidney Injury (AKI) is a sudden onset of kidney failure and damage marked by an increase in the serum
creatinine levels (amongst other biomarkers) of the patient. Kidney Disease Improving Global Outcomes (KDIGO)
has a set of guidelines and standard definitions of AKI:

• Stage 1: 50% increase in creatinine in <= 7 days or 0.3 increase in creatinine in <= 48 hours

• Stage 2: 100% increase in (or doubling of) creatinine in <= 48 hours

• Stage 3: 200% increase in (or tripling of) creatinine in <= 48 hours

This package contains a flagger to determine if a patient has developed AKI based on longitudinal data of serum
creatinine measurements. More information about the specific data input format can be found in the Getting started
section.

1.1 Methods of calculating AKI

There are three algorithmic frameworks for retroactively determining if a patient has developed AKI: rolling
minimum window, historical baseline trumping and baseline creatinine imputation.

Rolling Minimum Window (default)
The rolling minimum window definition of AKI is based on the change in creatinine in a 48 hour or 7 day rolling
window period. These are the stages mentioned in the KDIGO guidelines in the Introduction above.

Historical Baseline Trumping
The idea with Historical baseline trumping is to use the historical baseline creatinine value as the value to
compare the current creatinine to when runnning the KDIGO criterion instead of the rolling window value; i.e.
the historical baseline trumps the rolling minimum value.

Definition: The historical baseline is defined as the median of the patient’s outpatient creatinine values from 365
to 7 days prior to admission.

Reasoning: Right when a patient is admitted to the hospital, their creatinine might not be representative of what
their true, stable creatinine values normally are. As such, you might want to use the historical baseline value.
This historical baseline value, calculated retroactively, is only used around the time of admission - specifically

3

https://www.mathworks.com/help/econ/rolling-window-estimation-of-state-space-models.html
https://www.mathworks.com/help/econ/rolling-window-estimation-of-state-space-models.html

akiFlagger, Release 0.0.3

from the time of admission to 7 days (+ padding) out. For any time outside of this, the rolling window is still in
effect. . . but this allows you to capture patients whose hemodynamic balance might be messed up at the time of
admission.

Baseline Creatinine Imputation
If there are no outpatient creatinine values measured for the patient from 365 to 7 days prior to admission, it
is possible to still impute a baseline creatinine value based on the patients demographics: namely their age and
sex. This is what the eGFR_impute option in the flagger does: eGFR imputation because it assumes an eGFR
of 75 mL/min/1.73m^2 and estimates the creatinine from that.

4 Chapter 1. Introduction

CHAPTER 2

Installation

Python

You can install the flagger with pip. Simply type the following into command line and the package should install
properly.

pip install akiFlagger

To ensure that it is working properly, you can open a Python session and test it with.

import akiFlagger

akiFlagger.__version__

>> '1.1'

R

You can install the flagger through CRAN. Simply type the following into an RStudio terminal and the package should
install properly.

install.packages('akiFlagger')

5

https://cran.r-project.org/

akiFlagger, Release 0.0.3

6 Chapter 2. Installation

CHAPTER 3

Getting started

This package is meant to handle patient data. Let’s walk through an example of how to use this package with some
toy data since real patient data is probably protected health information.

Once you’ve installed the package following the instructions in Installation, you’re ready to get started. To begin with,
we’ll import the akiFlagger module.

Python

import akiFlagger

print(akiFlagger.__version__)

from akiFlagger import AKIFlagger, generate_toy_data

>> '1.0.8.0'

R

library(akiFlagger)

?returnAKIpatients

> Rendering development documentation for 'returnAKIpatients'

3.1 Let’s start off by creating some toy data.

Python

The flagger comes with a built-in generator of a toy dataset to demonstrate how it works. Simply call the gener-
ate_toy_data() function. By default, the toy dataset has 100 patients, but let’s initialize ours with 1000 patients.

7

akiFlagger, Release 0.0.3

toy = generate_toy_data(num_patients=1000)

print('Toy dataset shape: {}'.format(toy.shape))

>> Successfully generated toy data!

Toy dataset shape: (9094, 6)

The toy dataset comes with columns for the patient identifier, whether the measurement was taken in an inpatient or
outpatient setting, the creatinine measurement and time at which the measurement was taken. toy.head() should
yield something like this:

patient_id inpatient time creatinine
0 12732 False 2020-02-23 23:42:42 1.06
1 12732 False 2020-02-24 23:42:42 1.26
2 12732 False 2020-02-27 05:42:42 1.05
3 12732 True 2020-03-01 17:42:42 1.42
4 12732 True 2020-03-03 05:42:42 1.61

R

The R package comes with a built-in dataset, toy. The toy dataset comes with columns for the patient identifier,
inpatient, the creatinine measurement and the time at which the measurement was taken. head(toy) should yield
something like this:

patient_id inpatient time creatinine
1 12732 False 2019-11-16 05:42:42 1.05
2 12732 False 2019-11-20 05:42:42 1.61
3 12732 False 2020-01-15 05:42:42 1.42
4 12732 False 2020-02-27 11:42:42 1.26
5 12732 True 2020-03-01 17:42:42 1.06
6 19845 False 2019-11-20 18:02:54 0.89

Tip!

In order to calculate AKI, the flagger expects a dataset with certain columns in it. Depending on the type of compu-
tation you are interested in, your dataset will need to have different columns. Here’s a brief rundown of the necessary
columns.

• Rolling Minimum Window: patient_id, inpatient, time, and creatinine

• Historical Baseline Trumping: patient_id, inpatient, time, and creatinine

• Baseline Creatinine Imputation: age and sex (which defaults to female).

By default, the naming system is as follows:

patient_id → ‘patient_id’

inpatient/outpatient → ‘inpatient’

creatinine → ‘creatinine’

time → ‘time’

If you have different names for your columns, you must specify them.

8 Chapter 3. Getting started

akiFlagger, Release 0.0.3

3.2 Example: Rolling Minimum Window

The next code block runs the flagger and returns those patients who satisfy the AKI conditions according to the KDIGO
guidelines for change in creatinine values by the rolling-window definition, categorized as follows:

Stage 1: (1) 50% ↑ in creatinine in <= 7 days OR (2) 0.3 mg/dL ↑ in creatinine in <= 48 hours

Stage 2: 100% ↑ (or doubling of) in creatinine in <= 7 days

Stage 3: 200% ↑ (or tripling of) in creatinine in <= 7 days

Python

flagger = AKIFlagger()

out = flagger.returnAKIpatients(toy)

out = out.reset_index() # By default, the returned output has the patient_id and time
→˓as hierarchical indices

out.head()

We can take a look at what our dataframe looks like. out.head() yields this:

patient_id time inpatient creatinine aki
12732 2020-02-23 17:42:42 False 1.42 0
12732 2020-02-28 17:42:42 True 1.26 0
12732 2020-02-29 23:42:42 True 1.05 0
12732 2020-03-02 17:42:42 True 1.61 1
19845 2020-05-08 00:02:54 False 0.76 0

Notice that the dataframe looks exactly the same as we inputted into the flagger save an extra column added, aki. This
column has values of either 0, 1, 2, or 3, depending on which stage AKI the flagger found. The flagger runs on a
row-wise basis, meaning that each row is checked for the increase in creatinine. Should, for example, a patient meet
the criterion multiple times within a single encounter, the flagger will flag each measurement as a case of AKI.

Warning: The column names specified within the flagger should match the dataset exactly. The full list of
acceptable names can be found in the returnAKIpatients() function in the genindex section. For certain cases, the
flagger understands special names. For example, sex = ‘male’ will autoconvert the sex column from female to
male. But you still need to have a column named male in your data frame, otherwise an error will occur.

We can take a look at what the flagger flagged as AKI. out[out.aki > 0].head() should give a list of some
patients which were flagged. From that, we can subset the dataset on any given patient:

out[out.aki > 0].head() # this will give the rows which were marked as AKI by the
→˓flagger
out[out.patient_id == 19845] # from that, we can find which patients were flagged
→˓with AKI

3.2. Example: Rolling Minimum Window 9

https://kdigo.org/guidelines/
https://kdigo.org/guidelines/

akiFlagger, Release 0.0.3

patient_id time inpatient creatinine aki
4 19845 2020-05-08 00:02:54 False 0.76 0
5 19845 2020-05-08 06:02:54 False 0.89 0
6 19845 2020-05-09 18:02:54 False 1.07 1
7 19845 2020-05-12 18:02:54 True 0.43 0
8 19845 2020-05-13 18:02:54 True 0.34 0
9 19845 2020-05-14 18:02:54 True 1.12 3

Notice how as we would expect, when the creatinine more than tripled from 0.34 to 1.12, the flagger correctly identified
it as Stage 3 AKI.

You can even look at aggregate counts if you wanted as follows (but don’t take the numbers too seriously, of course,
because this is toy data):

aki_counts = out.aki.value_counts()
print('AKI counts')
print('----------')
print('No AKI: {}\nStage 1: {}\nStage 2: {}\nStage 3: {}'.format(aki_counts[0], aki_
→˓counts[1], aki_counts[2], aki_counts[3]))

>> AKI counts

No AKI: 571
Stage 1: 211
Stage 2: 99
Stage 3: 70

You can play around with the output of the returnAKIpatients() function in-depth to get a better understanding
of how the flagger is operating. There are even optional parameters such as add_min_creat = True within the
flagger which includes some of the intermediate steps the flagger is generating along to calculate AKI. Next, we’ll
take a look at an example of the other AKI-calculation method, the back-calculation method.

R

library(akiFlagger)

out <- returnAKIpatients(toy)

head(out)

We can take a look at what the flagger returns. head(out) should return:

patient_id inpatient creatinine time aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0
4 19008 False 1.77 2019-08-10 08:37:33 0
5 19008 False 1.47 2019-09-25 02:37:33 0
6 19008 False 1.64 2019-11-25 14:37:33 0

Notice that the dataframe looks exactly the same as we inputted into the flagger save an extra column added, aki. This
column has values of either 0, 1, 2, or 3, depending on which stage AKI the flagger found. The flagger runs on a
row-wise basis, meaning that each row is checked for the increase in creatinine. Should, for example, a patient meet
the criterion multiple times within a single encounter, the flagger will flag each measurement as a case of AKI.

10 Chapter 3. Getting started

akiFlagger, Release 0.0.3

Warning: The patient dataset you input should have minimally these columns: patient_id, inpatient,
time, and creatinine. If you are interested in demographic-based imputation, you’ll also want to include the
age and sex columns.

We can take a look at what the flagger flagged as AKI. head(out[out$aki > 0]) should give a list of some
patients which were flagged. From that, we can subset the dataset on any given patient:

head(out[out$aki > 0])

out[out$patient_id == 13264]

patient_id inpatient creatinine time aki
1 13264 False 0.47 2019-07-22 23:16:57 0
2 13264 False 0.1 2019-08-06 23:16:57 0
3 13264 False 0.75 2019-08-11 17:16:57 3
4 13264 False 0.79 2019-08-23 11:16:57 0
5 13264 False 0.61 2019-09-02 17:16:57 0
6 13264 False 0.59 2019-09-03 05:16:57 0
7 13264 False 0.55 2019-09-19 05:16:57 0
8 13264 False 0.49 2019-10-04 17:16:57 0
9 13264 False 0.18 2019-10-09 23:16:57 0
10 13264 False 0.27 2019-11-02 17:16:57 0
11 13264 False 0.5 2019-11-07 05:16:57 1
12 13264 False 0.63 2019-11-08 23:16:57 2
13 13264 False 0.29 2019-11-12 05:16:57 0
14 13264 False 0.22 2019-12-15 11:16:57 0
15 13264 True 0.28 2020-01-12 05:16:57 0

Notice how as we would expect, when the creatinine more than tripled from 0.1 to 0.72, the flagger correctly identified
it as Stage 3 AKI. Additionally, row 11 was flagged as stage 1 because that was a greater than 50% increase from 0.27
and row 12 was flagged because it was a greater than 100% increase from 0.27. Even though the flagger is performing
a row-wise computation, it is comparing the current creatinine value with the minimum in the past window1 hours
(defaults to 48 hours).

You can look at aggregate counts if you wanted as follows (but don’t take the numbers too seriously, of course, because
this is toy data):

table(out$aki)

>> 0 1 2 3
1001 44 19 14

3.3 Example: Historical Baseline Trumping

Next, we’ll run the flagger to “back-calculate” AKI; that is, using the median outpatient creatinine values from 365
to 7 days prior to admission to impute a baseline creatinine value. Then, we’ll run the same KDIGO criterion (except
for the 0.3 increase) comparing the creatinine value to baseline creatinine.

Python

3.3. Example: Historical Baseline Trumping 11

akiFlagger, Release 0.0.3

flagger = AKIFlagger(HB_trumping = True, add_baseline_creat = True)

out = flagger.returnAKIpatients(toy)

out.head()

patient_id time inpatient creatinine baseline_creat aki
12732 2020-02-22 23:42:42 False 1.26 0
12732 2020-02-24 05:42:42 False 1.61 1
12732 2020-02-24 23:42:42 False 1.05 0
12732 2020-02-26 23:42:42 False 1.42 1
12732 2020-03-03 11:42:42 True 1.06 0

R

out <- returnAKIpatients(toy, HB_trumping = T, add_baseline_creat = T)

head(out)

patient_id inpatient creatinine time baseline_creat aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0
4 19008 False 1.77 2019-08-10 08:37:33 0
5 19008 False 1.47 2019-09-25 02:37:33 0
6 19008 False 1.64 2019-11-25 14:37:33 0

Actually, by default the toy dataset only has patient values ± 5 days from the admission date, and because the baseline
creatinine value calculates using values from 365 to 7 days prior, you’ll notice that the flagger reverts to the rolling
window definition. This is important: in the absence of available baseline creatinine values, the flagger defaults to
a rolling minimum comparison. Indeed, most of the checking for AKI occurs outside of period of hospitalization.
Normally, of course, patients won’t have times restricted to just ± 5 days, but this is a good opportunity to showcase
one of the flagger features: the eGFR-based imputation of baseline creatinine.

The following equation is known as the CKD-EPI equation .

𝐺𝐹𝑅 = 142×𝑚𝑖𝑛(𝑆𝑐𝑟/𝜅, 1)
𝛼 ×𝑚𝑎𝑥(𝑆𝑐𝑟/𝜅, 1)

−1.200 × 0.9938𝐴𝑔𝑒 × (1 + 0.012𝑓)(3.1)

where:

• 𝐺𝐹𝑅 (𝑚𝐿/𝑚𝑖𝑛
1.73𝑚2) is the glomerular filtration rate

• 𝑆𝑐𝑟 (
𝑚𝑔
𝑑𝐿) is the serum creatinine

• 𝜅 (unitless) is 0.7 for females and 0.9 for males

• 𝛼 (unitless) is -0.241 for females and -0.302 for males

• 𝑓 is 1 if female, 0 if male

12 Chapter 3. Getting started

https://www.kidney.org/content/ckd-epi-creatinine-equation-2021

akiFlagger, Release 0.0.3

The idea is as follows: based on the above equation, we assume a GFR of 75 and then use the age and sex of the
patient to determine an estimate for the baseline creatinine. Theory aside, simply pass eGFR_impute = True into
the flagger and this will add values where the patient was missing outpatient values 365 to 7 days prior to admission.

Python

Note: The toy dataset doesn’t come with demographic information by default, but simply passing
include_demographic_info = True adds in a column for the age and sex variables.

toy = generate_toy_data(num_patients=100, include_demographic_info = True)

toy.head()

patient_id age female inpatient time creatinine
0 12732 64.5 True False 2020-02-23 23:42:42 1.45
1 12732 64.5 True False 2020-02-24 05:42:42 1.59
2 12732 64.5 True True 2020-02-28 05:42:42 1.46
3 12732 64.5 True True 2020-03-01 05:42:42 1.51
4 12732 64.5 True True 2020-03-01 23:42:42 1.52

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, add_baseline_creat =
→˓True,

sex = 'female')

out = flagger.returnAKIpatients(toy)

out.head()

patient_id time age female inpatient creatinine baseline_creat aki
12732 2020-02-23 23:42:42 64.5 True False 1.45 0.9300765849293292 0
12732 2020-02-24 05:42:42 64.5 True False 1.59 0.9300765849293292 0
12732 2020-02-28 05:42:42 64.5 True True 1.46 0.9300765849293292 1
12732 2020-03-01 05:42:42 64.5 True True 1.51 0.9300765849293292 1
12732 2020-03-01 23:42:42 64.5 True True 1.52 0.9300765849293292 1

R

There are actually two toy datasets that come with the packages: toy and toy.demo. toy.demo is the toy
dataframe with demographic information added in. As such, all we have to do is run

out <- returnAKIpatients(toy.demo, HB_trumping = T, eGFR_impute = F)

head(out)

patient_id inpatient creatinine time age sex baseline_creat aki
1 19008 False 1.94 2019-12-30 02:37:33 52.9 True 0.8806117024042 0
2 19008 True 1.41 2020-01-02 02:37:33 52.9 True 0.8806117024042 1
3 19008 True 1.2 2020-01-02 14:37:33 52.9 True 0.8806117024042 1
4 19008 True 1.4 2020-01-03 02:37:33 52.9 True 0.8806117024042 1
5 19008 True 1.49 2020-01-03 14:37:33 52.9 True 0.8806117024042 1
6 19008 True 1.71 2020-01-03 20:37:33 52.9 True 0.8806117024042 1

That about does it for the basics! There are a slew of other features, some of which are listed in the Additional Features
section. For a full listing of the features and appropriate use cases, see the Documentation at akiflagger.readthedocs.io.

3.3. Example: Historical Baseline Trumping 13

https://akiflagger.readthedocs.io/en/latest/

akiFlagger, Release 0.0.3

3.4 Example: Baseline Creatinine Imputation

Python

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, add_baseline_creat =
→˓True)

out = flagger.returnAKIpatients(toy)

R

out <- returnAKIpatients(toy.demo, HB_trumping = T, eGFR_impute = T)

14 Chapter 3. Getting started

CHAPTER 4

Additional Features and Common Use Cases

For most use cases, you will just need to specify the AKI definition methodology (i.e. rolling minimum window,
historical baseline trumping, or baseline creatinine imputation) and the AKI-column will be returned. There are a
slew of other features, some of which are listed below. For a full listing of the features and appropriate use cases, see
the Documentation at akiflagger.readthedocs.io.

4.1 → Adding padding to the rolling window

It’s often the case that you want to add some padding to the window to account for variations occurring on the floor
(52 hour & 172 hour windows instead, for example). If the amount of padding you would like to add is the same for
both the smaller and larger window, simply pass padding='_hours' filling the blank with the number of hours
to add to the windows. If the pad times are different between windows, the parameters pad1time and pad2time
allow you to add just this padding to the initial windows of 48 and 172 hours. In fact, if you wanted a window of 36
hours, you could even set pad1time = ‘-12hours’; this is one way in which you could modify the rolling window.

Python

Example 0: Adding 4-hour padding to windows

flagger = AKIFlagger(padding = '4hours')

example0 = flagger.returnAKIpatients(toy)

example0[example0.aki > 0].head(3)

patient_id time inpatient creatinine aki
12732 2020-02-24 23:42:42 False 1.61 1
19845 2020-05-12 18:02:54 True 0.76 2
19845 2020-05-14 18:02:54 True 0.89 2

R

15

https://akiflagger.readthedocs.io/en/latest/

akiFlagger, Release 0.0.3

Example 0: Adding 4-hour padding to windows

example0 <- returnAKIpatients(toy, padding = as.difftime(4, units = 'hours'))

head(example0[example0$aki > 0])

patient_id inpatient creatinine time aki
1 19008 False 2.06 2019-11-26 08:37:33 1
2 13264 False 0.75 2019-08-11 17:16:57 3
3 13264 False 0.5 2019-11-07 05:16:57 1
4 13264 False 0.63 2019-11-08 23:16:57 2
5 18752 False 1.18 2019-09-13 01:18:00 1
6 10537 False 1.34 2019-11-08 07:55:12 1

4.2 → Working with different column names

Python

As an additional example, the patient identifier will often come in as ‘PAT_MRN_ID’ or ‘PAT_ENC_CSN_ID’ (or
something of the sort) if it is coming from a typical clinical data warehouse/repository. Accordingly, these should be
passed in as options to the flagger.

Example 1: Working with different column names

dataframe = toy.rename(columns = {'patient_id': 'PAT_MRN_ID', 'creatinine':'CREATININE
→˓', 'inpatient': 'INPATIENT', 'time': 'TIME'

'age': 'AGE', 'female': 'SEX'})

flagger = AKIFlagger(patient_id = 'PAT_MRN_ID', inpatient = 'INPATIENT', time = 'TIME
→˓', creatinine = 'CREATININE', age = 'AGE', sex = 'SEX')

example1 = flagger.returnAKIpatients(dataframe)

example1.head(3)

PAT_MRN_ID TIME AGE SEX INPATIENT CREATININE aki
0 12732 2020-02-22 11:42:42 64.5 True False 1.62 0
1 12732 2020-02-23 11:42:42 64.5 True False 1.52 0
2 12732 2020-02-24 23:42:42 64.5 True False 1.63 0

R

Say we had a dataframe which looked like this:

PAT_MRN_ID OUTPATIENT TIME CREATININE
1 12732 True 2019-11-16 05:42:42 1.05
2 12732 True 2019-11-20 05:42:42 1.61
3 12732 True 2020-01-15 05:42:42 1.42

In order to pass it to the flagger, we need to shape our data in a way that the flagger will understand. This means
converting the outpatient columns to inpatient, and specifying the names of the columns as follows

16 Chapter 4. Additional Features and Common Use Cases

akiFlagger, Release 0.0.3

Example 1: Working with different column names

library(dplyr) # rename function from dplyr library

dataframe$OUTPATIENT <- !dataframe$OUTPATIENT # turn the dataframe into inpatient
→˓instead of outpatient by logically inverting it

dataframe <- dataframe %>% rename('patient_id' = 'PAT_MRN_ID', 'inpatient' =
→˓'OUTPATIENT', 'time' = 'TIME', 'creatinine' = 'CREATININE')

head(returnAKIpatients(dataframe), n = 3L)

patient_id inpatient creatinine time aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0

4.3 → Adding in rolling window minimum creatinines

To add in the baseline creatinine, simply pass the flag add_min_creat = True to the flagger. This will add in
two columns which contain the minimum values in the rolling window, which is an intermediate column generated to
calculate AKI; the flag adds in the column which the current creatinine is checked against.

Python

Example 2: Adding in rolling-window minima

flagger = AKIFlagger(add_min_creat = True)

example2 = flagger.returnAKIpatients(toy)

example2.head(3)

patient_id time inpatient creatinine min_creat48 min_creat168 aki
12732 2020-02-22 17:42:42 False 1.05 1.05 1.05 0
12732 2020-02-26 05:42:42 False 1.26 1.26 1.05 0
12732 2020-02-29 05:42:42 True 1.06 1.06 1.05 0

R

Example 2: Adding in rolling window minima

example2 <- returnAKIpatients(toy, add_min_creat = T)

head(example2)

4.3. → Adding in rolling window minimum creatinines 17

akiFlagger, Release 0.0.3

patient_id inpatient creatinine time min_creat48 min_creat7d aki
1 19008 False 2.05 2019-07-08 14:37:33 2.05 2.05 0
2 19008 False 1.65 2019-07-09 08:37:33 1.65 1.65 0
3 19008 False 1.58 2019-07-29 08:37:33 1.58 1.58 0
4 19008 False 1.77 2019-08-10 08:37:33 1.77 1.77 0
5 19008 False 1.47 2019-09-25 02:37:33 1.47 1.47 0
6 19008 False 1.64 2019-11-25 14:37:33 1.64 1.64 0

4.4 → Adding in baseline creatinine

To add in the baseline creatinine, simply pass the flag add_baseline_creat = True to the flagger. Note that the
baseline creatinine is not defined for outpatient measurements. Baseline creatinine can be thought of as the “resting”
creatinine before coming into the hospital, so it doesn’t make much sense to define the baseline creatinine outside of a
hospital visit.

Python

Example 3: Adding in baseline creatinine

toy = generate_toy_data(include_demographic_info = True)

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, #Specifying both
→˓calculation methods

add_baseline_creat = True, # Additional parameter to add in
→˓baseline creatinine values

age = 'age', sex = 'female')

example3 = flagger.returnAKIpatients(toy)

example3[~example3.baseline_creat.isnull()].head(3)

patient_id time age female inpatient creatinine baseline_creat aki
12732 2020-02-22 11:42:42 64.5 True False 1.62 0.9300765849293292 0
12732 2020-02-25 11:42:42 64.5 True False 1.63 0.9300765849293292 0
12732 2020-02-25 17:42:42 64.5 True False 1.52 0.9300765849293292 0

R

Example 3: Adding in baseline creatinine

example3 <- returnAKIpatients(toy, add_baseline_creat = T)

head(example3)

patient_id inpatient creatinine time age sex baseline_creat aki
1 19008 False 1.94 2019-12-30 02:37:33 52.9 True 0.8806117024042 0
2 19008 True 1.41 2020-01-02 02:37:33 52.9 True 0.8806117024042 1
3 19008 True 1.2 2020-01-02 14:37:33 52.9 True 0.8806117024042 1
4 19008 True 1.4 2020-01-03 02:37:33 52.9 True 0.8806117024042 1
5 19008 True 1.49 2020-01-03 14:37:33 52.9 True 0.8806117024042 1
6 19008 True 1.71 2020-01-03 20:37:33 52.9 True 0.8806117024042 1

18 Chapter 4. Additional Features and Common Use Cases

CHAPTER 5

More information

For more information on the package, feel free to contact francis.p.wilson@yale.edu or is439@yale.edu.

Useful guides exist for more information about AKI, rolling windows, the back-calculation imputation method.

• AKI

• KDIGO guidelines

• KDIGO standard definitions

• Rolling window

• Back-calculation

• CKD-EPI equation

The source code for the package can be found on GitHub.

• genindex

19

mailto:francis.p.wilson@yale.edu
mailto:is439@yale.edu
https://www.kidney.org/atoz/content/AcuteKidneyInjury
https://kdigo.org/guidelines/acute-kidney-injury/
https://www.uptodate.com/contents/image?imageKey=NEPH%2F83168
https://www.mathworks.com/help/econ/rolling-window-estimation-of-state-space-models.html
https://cjasn.asnjournals.org/content/5/7/1165
https://www.niddk.nih.gov/health-information/professionals/clinical-tools-patient-management/kidney-disease/laboratory-evaluation/glomerular-filtration-rate/estimating
https://github.com/isaranwrap/StandardizingAKI

akiFlagger, Release 0.0.3

20 Chapter 5. More information

CHAPTER 6

Introduction

Acute Kidney Injury (AKI) is a sudden onset of kidney failure and damage marked by an increase in the serum
creatinine levels (amongst other biomarkers) of the patient. Kidney Disease Improving Global Outcomes (KDIGO)
has a set of guidelines and standard definitions of AKI:

• Stage 1: 50% increase in creatinine in <= 7 days or 0.3 increase in creatinine in <= 48 hours

• Stage 2: 100% increase in (or doubling of) creatinine in <= 48 hours

• Stage 3: 200% increase in (or tripling of) creatinine in <= 48 hours

This package contains a flagger to determine if a patient has developed AKI based on the criterion above. More
information about the specific data input format can be found in the Getting started section.

21

akiFlagger, Release 0.0.3

22 Chapter 6. Introduction

CHAPTER 7

Installation

Python

You can install the flagger with pip. Simply type the following into command line and the package should install
properly.

pip install akiFlagger

To ensure that it is working properly, you can open a Python session and test it with

import akiFlagger

akiFlagger.__version__

>> '1.1'

R

You can install the flagger through CRAN. Simply type the following into an RStudio terminal and the package should
install properly.

install.packages('akiFlagger')

To ensure that it is working properly, you can open an RStudio session and test it with

library(akiFlagger)

23

https://cran.r-project.org/

akiFlagger, Release 0.0.3

24 Chapter 7. Installation

CHAPTER 8

Getting started

This package is meant to handle patient data. Let’s walk through an example of how to use this package with some
toy data since real patient data is probably protected health information.

Once you’ve installed the package following the instructions in Installation, you’re ready to get started. To begin with,
we’ll import the akiFlagger module.

Python

import akiFlagger

print(akiFlagger.__version__)

from akiFlagger import AKIFlagger, generate_toy_data

>> '1.1'

R

library(akiFlagger)

?returnAKIpatients

> Rendering development documentation for 'returnAKIpatients'

8.1 Let’s start off by generating some toy data.

Python

The flagger comes with a built-in generator of a toy dataset to demonstrate how it works. Simply call the gener-
ate_toy_data() function. By default, the toy dataset has 100 patients, but let’s initialize ours with 1000 patients.

25

akiFlagger, Release 0.0.3

toy = generate_toy_data(num_patients=1000)

print('Toy dataset shape: {}'.format(toy.shape))

>> Successfully generated toy data!

Toy dataset shape: (9094, 6)

The toy dataset comes with columns for the patient identifier, whether the measurement was taken in an inpatient or
outpatient setting, the creatinine measurement and time at which the measurement was taken. toy.head() should
yield something like this:

patient_id inpatient time creatinine
0 12732 False 2020-02-23 23:42:42 1.06
1 12732 False 2020-02-24 23:42:42 1.26
2 12732 False 2020-02-27 05:42:42 1.05
3 12732 True 2020-03-01 17:42:42 1.42
4 12732 True 2020-03-03 05:42:42 1.61

R

The R package comes with a built-in dataset, toy. The toy dataset comes with columns for the patient identifier,
inpatient, the creatinine measurement and the time at which the measurement was taken. head(toy) should yield
something like this:

patient_id inpatient time creatinine
1 12732 False 2019-11-16 05:42:42 1.05
2 12732 False 2019-11-20 05:42:42 1.61
3 12732 False 2020-01-15 05:42:42 1.42
4 12732 False 2020-02-27 11:42:42 1.26
5 12732 True 2020-03-01 17:42:42 1.06
6 19845 False 2019-11-20 18:02:54 0.89

Tip!

In order to calculate AKI, the flagger expects a dataset with certain columns in it. Depending on the type of compu-
tation you are interested in, your dataset will need to have different columns. Here’s a brief rundown of the necessary
columns.

• Rolling Minimum Window: patient_id, inpatient, time, and creatinine

• Historical Baseline Trumping: patient_id, inpatient, time, and creatinine

• Baseline Creatinine Imputation: age and sex (which defaults to female).

By default, the naming system is as follows:

patient_id → ‘patient_id’

inpatient/outpatient → ‘inpatient’

creatinine → ‘creatinine’

time → ‘time’

If you have different names for your columns, you must specify them.

26 Chapter 8. Getting started

akiFlagger, Release 0.0.3

8.2 Example: Rolling Minimum Window

The next code block runs the flagger and returns those patients who satisfy the AKI conditions according to the KDIGO
guidelines for change in creatinine values by the rolling-window definition, categorized as follows:

Stage 1: (1) 50% ↑ in creatinine in <= 7 days OR (2) 0.3 mg/dL ↑ in creatinine in <= 48 hours

Stage 2: 100% ↑ (or doubling of) in creatinine in <= 7 days

Stage 3: 200% ↑ (or tripling of) in creatinine in <= 7 days

Python

flagger = AKIFlagger()

out = flagger.returnAKIpatients(toy)

out = out.reset_index() # By default, the returned output has the patient_id and time
→˓as hierarchical indices

out.head()

We can take a look at what our dataframe looks like. out.head() yields this:

patient_id time inpatient creatinine aki
12732 2020-02-23 17:42:42 False 1.42 0
12732 2020-02-28 17:42:42 True 1.26 0
12732 2020-02-29 23:42:42 True 1.05 0
12732 2020-03-02 17:42:42 True 1.61 1
19845 2020-05-08 00:02:54 False 0.76 0

Notice that the dataframe looks exactly the same as we inputted into the flagger save an extra column added, aki. This
column has values of either 0, 1, 2, or 3, depending on which stage AKI the flagger found. The flagger runs on a
row-wise basis, meaning that each row is checked for the increase in creatinine. Should, for example, a patient meet
the criterion multiple times within a single encounter, the flagger will flag each measurement as a case of AKI.

Warning: The column names specified within the flagger should match the dataset exactly. The full list of
acceptable names can be found in the returnAKIpatients() function in the genindex section. For certain cases, the
flagger understands special names. For example, sex = ‘male’ will autoconvert the sex column from female to
male. But you still need to have a column named male in your data frame, otherwise an error will occur.

We can take a look at what the flagger flagged as AKI. out[out.aki > 0].head() should give a list of some
patients which were flagged. From that, we can subset the dataset on any given patient:

out[out.aki > 0].head() # this will give the rows which were marked as AKI by the
→˓flagger
out[out.patient_id == 19845] # from that, we can find which patients were flagged
→˓with AKI

8.2. Example: Rolling Minimum Window 27

https://kdigo.org/guidelines/
https://kdigo.org/guidelines/

akiFlagger, Release 0.0.3

patient_id time inpatient creatinine aki
4 19845 2020-05-08 00:02:54 False 0.76 0
5 19845 2020-05-08 06:02:54 False 0.89 0
6 19845 2020-05-09 18:02:54 False 1.07 1
7 19845 2020-05-12 18:02:54 True 0.43 0
8 19845 2020-05-13 18:02:54 True 0.34 0
9 19845 2020-05-14 18:02:54 True 1.12 3

Notice how as we would expect, when the creatinine more than tripled from 0.34 to 1.12, the flagger correctly identified
it as Stage 3 AKI.

You can even look at aggregate counts if you wanted as follows (but don’t take the numbers too seriously, of course,
because this is toy data):

aki_counts = out.aki.value_counts()
print('AKI counts')
print('----------')
print('No AKI: {}\nStage 1: {}\nStage 2: {}\nStage 3: {}'.format(aki_counts[0], aki_
→˓counts[1], aki_counts[2], aki_counts[3]))

>> AKI counts

No AKI: 571
Stage 1: 211
Stage 2: 99
Stage 3: 70

You can play around with the output of the returnAKIpatients() function in-depth to get a better understanding
of how the flagger is operating. There are even optional parameters such as add_min_creat = True within the
flagger which includes some of the intermediate steps the flagger is generating along to calculate AKI. Next, we’ll
take a look at an example of the other AKI-calculation method, the back-calculation method.

R

library(akiFlagger)

out <- returnAKIpatients(toy)

head(out)

We can take a look at what the flagger returns. head(out) should return:

patient_id inpatient creatinine time aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0
4 19008 False 1.77 2019-08-10 08:37:33 0
5 19008 False 1.47 2019-09-25 02:37:33 0
6 19008 False 1.64 2019-11-25 14:37:33 0

Notice that the dataframe looks exactly the same as we inputted into the flagger save an extra column added, aki. This
column has values of either 0, 1, 2, or 3, depending on which stage AKI the flagger found. The flagger runs on a
row-wise basis, meaning that each row is checked for the increase in creatinine. Should, for example, a patient meet
the criterion multiple times within a single encounter, the flagger will flag each measurement as a case of AKI.

28 Chapter 8. Getting started

akiFlagger, Release 0.0.3

Warning: The patient dataset you input should have minimally these columns: patient_id, inpatient,
time, and creatinine. If you are interested in demographic-based imputation, you’ll also want to include the
age and sex columns.

We can take a look at what the flagger flagged as AKI. head(out[out$aki > 0]) should give a list of some
patients which were flagged. From that, we can subset the dataset on any given patient:

head(out[out$aki > 0])

out[out$patient_id == 13264]

patient_id inpatient creatinine time aki
1 13264 False 0.47 2019-07-22 23:16:57 0
2 13264 False 0.1 2019-08-06 23:16:57 0
3 13264 False 0.75 2019-08-11 17:16:57 3
4 13264 False 0.79 2019-08-23 11:16:57 0
5 13264 False 0.61 2019-09-02 17:16:57 0
6 13264 False 0.59 2019-09-03 05:16:57 0
7 13264 False 0.55 2019-09-19 05:16:57 0
8 13264 False 0.49 2019-10-04 17:16:57 0
9 13264 False 0.18 2019-10-09 23:16:57 0
10 13264 False 0.27 2019-11-02 17:16:57 0
11 13264 False 0.5 2019-11-07 05:16:57 1
12 13264 False 0.63 2019-11-08 23:16:57 2
13 13264 False 0.29 2019-11-12 05:16:57 0
14 13264 False 0.22 2019-12-15 11:16:57 0
15 13264 True 0.28 2020-01-12 05:16:57 0

Notice how as we would expect, when the creatinine more than tripled from 0.1 to 0.72, the flagger correctly identified
it as Stage 3 AKI. Additionally, row 11 was flagged as stage 1 because that was a greater than 50% increase from 0.27
and row 12 was flagged because it was a greater than 100% increase from 0.27. Even though the flagger is performing
a row-wise computation, it is comparing the current creatinine value with the minimum in the past window1 hours
(defaults to 48 hours).

You can look at aggregate counts if you wanted as follows (but don’t take the numbers too seriously, of course, because
this is toy data):

table(out$aki)

>> 0 1 2 3
1001 44 19 14

8.3 Example: Historical Baseline Trumping

Next, we’ll run the flagger to “back-calculate” AKI; that is, using the median outpatient creatinine values from 365
to 7 days prior to admission to impute a baseline creatinine value. Then, we’ll run the same KDIGO criterion (except
for the 0.3 increase) comparing the creatinine value to baseline creatinine.

Python

8.3. Example: Historical Baseline Trumping 29

akiFlagger, Release 0.0.3

flagger = AKIFlagger(HB_trumping = True, add_baseline_creat = True)

out = flagger.returnAKIpatients(toy)

out.head()

patient_id time inpatient creatinine baseline_creat aki
12732 2020-02-22 23:42:42 False 1.26 0
12732 2020-02-24 05:42:42 False 1.61 1
12732 2020-02-24 23:42:42 False 1.05 0
12732 2020-02-26 23:42:42 False 1.42 1
12732 2020-03-03 11:42:42 True 1.06 0

R

out <- returnAKIpatients(toy, HB_trumping = T, add_baseline_creat = T)

head(out)

patient_id inpatient creatinine time baseline_creat aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0
4 19008 False 1.77 2019-08-10 08:37:33 0
5 19008 False 1.47 2019-09-25 02:37:33 0
6 19008 False 1.64 2019-11-25 14:37:33 0

Actually, by default the toy dataset only has patient values ± 5 days from the admission date, and because the baseline
creatinine value calculates using values from 365 to 7 days prior, you’ll notice that the flagger reverts to the rolling
window definition. This is important: in the absence of available baseline creatinine values, the flagger defaults to
a rolling minimum comparison. Indeed, most of the checking for AKI occurs outside of period of hospitalization.
Normally, of course, patients won’t have times restricted to just ± 5 days, but this is a good opportunity to showcase
one of the flagger features: the eGFR-based imputation of baseline creatinine.

The following equation is known as the CKD-EPI equation .

𝐺𝐹𝑅 = 142×𝑚𝑖𝑛(𝑆𝑐𝑟/𝜅, 1)
𝛼 ×𝑚𝑎𝑥(𝑆𝑐𝑟/𝜅, 1)

−1.200 × 0.9938𝐴𝑔𝑒 × (1 + 0.012𝑓)(8.1)

where:

• 𝐺𝐹𝑅 (𝑚𝐿/𝑚𝑖𝑛
1.73𝑚2) is the glomerular filtration rate

• 𝑆𝑐𝑟 (
𝑚𝑔
𝑑𝐿) is the serum creatinine

• 𝜅 (unitless) is 0.7 for females and 0.9 for males

• 𝛼 (unitless) is -0.241 for females and -0.302 for males

• 𝑓 is 1 if female, 0 if male

30 Chapter 8. Getting started

https://www.kidney.org/content/ckd-epi-creatinine-equation-2021

akiFlagger, Release 0.0.3

The idea is as follows: based on the above equation, we assume a GFR of 75 and then use the age and sex of the
patient to determine an estimate for the baseline creatinine. Theory aside, simply pass eGFR_impute = True into
the flagger and this will add values where the patient was missing outpatient values 365 to 7 days prior to admission.

Python

Note: The toy dataset doesn’t come with demographic information by default, but simply passing
include_demographic_info = True adds in a column for the age and sex variables.

toy = generate_toy_data(num_patients=100, include_demographic_info = True)

toy.head()

patient_id age female inpatient time creatinine
0 12732 64.5 True False 2020-02-23 23:42:42 1.45
1 12732 64.5 True False 2020-02-24 05:42:42 1.59
2 12732 64.5 True True 2020-02-28 05:42:42 1.46
3 12732 64.5 True True 2020-03-01 05:42:42 1.51
4 12732 64.5 True True 2020-03-01 23:42:42 1.52

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, add_baseline_creat =
→˓True,

sex = 'female')

out = flagger.returnAKIpatients(toy)

out.head()

patient_id time age female inpatient creatinine baseline_creat aki
12732 2020-02-23 23:42:42 64.5 True False 1.45 0.9300765849293292 0
12732 2020-02-24 05:42:42 64.5 True False 1.59 0.9300765849293292 0
12732 2020-02-28 05:42:42 64.5 True True 1.46 0.9300765849293292 1
12732 2020-03-01 05:42:42 64.5 True True 1.51 0.9300765849293292 1
12732 2020-03-01 23:42:42 64.5 True True 1.52 0.9300765849293292 1

R

There are actually two toy datasets that come with the packages: toy and toy.demo. toy.demo is the toy
dataframe with columns for age, sex, and race. As such, all we have to do is run

out <- returnAKIpatients(toy.demo, HB_trumping = T, eGFR_impute = T)

head(out)

patient_id inpatient creatinine time age sex baseline_creat aki
1 19008 False 1.94 2019-12-30 02:37:33 52.9 True 0.8806117024042 0
2 19008 True 1.41 2020-01-02 02:37:33 52.9 True 0.8806117024042 1
3 19008 True 1.2 2020-01-02 14:37:33 52.9 True 0.8806117024042 1
4 19008 True 1.4 2020-01-03 02:37:33 52.9 True 0.8806117024042 1
5 19008 True 1.49 2020-01-03 14:37:33 52.9 True 0.8806117024042 1
6 19008 True 1.71 2020-01-03 20:37:33 52.9 True 0.8806117024042 1

8.3. Example: Historical Baseline Trumping 31

akiFlagger, Release 0.0.3

8.4 Example: Baseline Creatinine Imputation

Python

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, add_baseline_creat =
→˓True)

out = flagger.returnAKIpatients(toy)

R

out <- returnAKIpatients(toy.demo, HB_trumping = T, eGFR_impute = T)

That about does it for the basics! There are a slew of other features, some of which are listed in the Additional Features
section. For a full listing of the features and appropriate use cases, see the Documentation at akiflagger.readthedocs.io.

32 Chapter 8. Getting started

https://akiflagger.readthedocs.io/en/latest/

CHAPTER 9

Using the GUI

33

akiFlagger, Release 0.0.3

34 Chapter 9. Using the GUI

CHAPTER 10

Additional Features and Common Use Cases

For most use cases, you will just need to specify the AKI definition methodology (i.e. rolling minimum window,
historical baseline trumping, or baseline creatinine imputation) and the AKI-column will be returned. There are a
slew of other features, some of which are listed below. For a full listing of the features and appropriate use cases, see
the Documentation at akiflagger.readthedocs.io.

→ Adding padding to the rolling window

It’s often the case that you want to add some padding to the window to account for variations occurring on the floor
(52 hour & 172 hour windows instead, for example). If the amount of padding you would like to add is the same for
both the smaller and larger window, simply pass padding='_hours' filling the blank with the number of hours
to add to the windows. If the pad times are different between windows, the parameters pad1time and pad2time
allow you to add just this padding to the initial windows of 48 and 172 hours. In fact, if you wanted a window of 36
hours, you could even set pad1time = ‘-12hours’; this is one way in which you could modify the rolling window.

Python

Example 0: Adding 4-hour padding to windows

flagger = AKIFlagger(padding = '4hours')

example0 = flagger.returnAKIpatients(toy)

example0[example0.aki > 0].head(3)

patient_id time inpatient creatinine aki
12732 2020-02-24 23:42:42 False 1.61 1
19845 2020-05-12 18:02:54 True 0.76 2
19845 2020-05-14 18:02:54 True 0.89 2

R

Example 0: Adding 4-hour padding to windows

(continues on next page)

35

https://akiflagger.readthedocs.io/en/latest/

akiFlagger, Release 0.0.3

(continued from previous page)

example0 <- returnAKIpatients(toy, padding = as.difftime(4, units = 'hours'))

head(example0[example0$aki > 0])

patient_id inpatient creatinine time aki
1 19008 False 2.06 2019-11-26 08:37:33 1
2 13264 False 0.75 2019-08-11 17:16:57 3
3 13264 False 0.5 2019-11-07 05:16:57 1
4 13264 False 0.63 2019-11-08 23:16:57 2
5 18752 False 1.18 2019-09-13 01:18:00 1
6 10537 False 1.34 2019-11-08 07:55:12 1

→ Working with different column names

Python

As an additional example, the patient identifier will often come in as ‘PAT_MRN_ID’ or ‘PAT_ENC_CSN_ID’ (or
something of the sort) if it is coming from a typical clinical data warehouse/repository. Accordingly, these should be
passed in as options to the flagger.

Example 1: Working with different column names

dataframe = toy.rename(columns = {'patient_id': 'PAT_MRN_ID', 'creatinine':'CREATININE
→˓', 'inpatient': 'INPATIENT', 'time': 'TIME'

'age': 'AGE', 'female': 'SEX'})

flagger = AKIFlagger(patient_id = 'PAT_MRN_ID', inpatient = 'INPATIENT', time = 'TIME
→˓', creatinine = 'CREATININE', age = 'AGE', sex = 'SEX')

example1 = flagger.returnAKIpatients(dataframe)

example1.head(3)

PAT_MRN_ID TIME AGE SEX INPATIENT CREATININE aki
0 12732 2020-02-22 11:42:42 64.5 True False 1.62 0
1 12732 2020-02-23 11:42:42 64.5 True False 1.52 0
2 12732 2020-02-24 23:42:42 64.5 True False 1.63 0

R

Say we had a dataframe which looked like this:

PAT_MRN_ID OUTPATIENT TIME CREATININE
1 12732 True 2019-11-16 05:42:42 1.05
2 12732 True 2019-11-20 05:42:42 1.61
3 12732 True 2020-01-15 05:42:42 1.42

In order to pass it to the flagger, we need to shape our data in a way that the flagger will understand. This means
converting the outpatient columns to inpatient, and specifying the names of the columns as follows

Example 1: Working with different column names

(continues on next page)

36 Chapter 10. Additional Features and Common Use Cases

akiFlagger, Release 0.0.3

(continued from previous page)

library(dplyr) # rename function from dplyr library

dataframe$OUTPATIENT <- !dataframe$OUTPATIENT # turn the dataframe into inpatient
→˓instead of outpatient by logically inverting it

dataframe <- dataframe %>% rename('patient_id' = 'PAT_MRN_ID', 'inpatient' =
→˓'OUTPATIENT', 'time' = 'TIME', 'creatinine' = 'CREATININE')

head(returnAKIpatients(dataframe), n = 3L)

patient_id inpatient creatinine time aki
1 19008 False 2.05 2019-07-08 14:37:33 0
2 19008 False 1.65 2019-07-09 08:37:33 0
3 19008 False 1.58 2019-07-29 08:37:33 0

→ Adding in rolling-window minimum creatinines

To add in the baseline creatinine, simply pass the flag add_min_creat = True to the flagger. This will add in
two columns which contain the minimum values in the rolling window, which is an intermediate column generated to
calculate AKI; the flag adds in the column which the current creatinine is checked against.

Python

Example 2: Adding in rolling-window minima

flagger = AKIFlagger(add_min_creat = True)

example2 = flagger.returnAKIpatients(toy)

example2.head(3)

patient_id time inpatient creatinine min_creat48 min_creat168 aki
12732 2020-02-22 17:42:42 False 1.05 1.05 1.05 0
12732 2020-02-26 05:42:42 False 1.26 1.26 1.05 0
12732 2020-02-29 05:42:42 True 1.06 1.06 1.05 0

R

Example 2: Adding in rolling-window minima

example2 <- returnAKIpatients(toy, add_min_creat = T)

head(example2)

patient_id inpatient creatinine time min_creat48 min_creat7d aki
1 19008 False 2.05 2019-07-08 14:37:33 2.05 2.05 0
2 19008 False 1.65 2019-07-09 08:37:33 1.65 1.65 0
3 19008 False 1.58 2019-07-29 08:37:33 1.58 1.58 0
4 19008 False 1.77 2019-08-10 08:37:33 1.77 1.77 0
5 19008 False 1.47 2019-09-25 02:37:33 1.47 1.47 0
6 19008 False 1.64 2019-11-25 14:37:33 1.64 1.64 0

→ Adding in baseline creatinine

37

akiFlagger, Release 0.0.3

To add in the baseline creatinine, simply pass the flag add_baseline_creat = True to the flagger. Note that the
baseline creatinine is not defined for outpatient measurements. Baseline creatinine can be thought of as the “resting”
creatinine before coming into the hospital, so it doesn’t make much sense to define the baseline creatinine outside of a
hospital visit.

Python

Example 3: Adding in baseline creatinine

toy = generate_toy_data(include_demographic_info = True)

flagger = AKIFlagger(HB_trumping = True, eGFR_impute = True, #Specifying both
→˓calculation methods

add_baseline_creat = True, # Additional parameter to add in
→˓baseline creatinine values

age = 'age', sex = 'female')

example3 = flagger.returnAKIpatients(toy)

example3[~example3.baseline_creat.isnull()].head(3)

patient_id time age female inpatient creatinine baseline_creat aki
12732 2020-02-22 11:42:42 64.5 True False 1.62 0.9300765849293292 0
12732 2020-02-25 11:42:42 64.5 True False 1.63 0.9300765849293292 0
12732 2020-02-25 17:42:42 64.5 True False 1.52 0.9300765849293292 0

R

Example 3: Adding in baseline creatinine

example3 <- returnAKIpatients(toy, add_baseline_creat = T)

head(example3)

patient_id inpatient creatinine time age sex baseline_creat aki
1 19008 False 1.94 2019-12-30 02:37:33 52.9 True 0.8806117024042 0
2 19008 True 1.41 2020-01-02 02:37:33 52.9 True 0.8806117024042 1
3 19008 True 1.2 2020-01-02 14:37:33 52.9 True 0.8806117024042 1
4 19008 True 1.4 2020-01-03 02:37:33 52.9 True 0.8806117024042 1
5 19008 True 1.49 2020-01-03 14:37:33 52.9 True 0.8806117024042 1
6 19008 True 1.71 2020-01-03 20:37:33 52.9 True 0.8806117024042 1

38 Chapter 10. Additional Features and Common Use Cases

CHAPTER 11

More information

For more information on the package, feel free to contact francis.p.wilson@yale.edu, abinet.aklilu@yale.edu or
is439@yale.edu.

Useful guides exist for more information about AKI, rolling windows, the back-calculation imputation method.

• AKI

• KDIGO guidelines

• KDIGO standard definitions

• Rolling-window method

• Back-calculation method

• CKD-EPI equation

The source code for the package can be found on GitHub.

• genindex

39

mailto:francis.p.wilson@yale.edu
mailto:abinet.aklilu@yale.edu
mailto:is439@yale.edu
https://www.kidney.org/atoz/content/AcuteKidneyInjury
https://kdigo.org/guidelines/acute-kidney-injury/
http://www.european-renal-best-practice.org/sites/default/files/u33/ndt.gfs375.full_.pdf
https://www.mathworks.com/help/econ/rolling-window-estimation-of-state-space-models.html
https://cjasn.asnjournals.org/content/5/7/1165
https://www.niddk.nih.gov/health-information/professionals/clinical-tools-patient-management/kidney-disease/laboratory-evaluation/glomerular-filtration-rate/estimating
https://github.com/isaranwrap/StandardizingAKI

akiFlagger, Release 0.0.3

40 Chapter 11. More information

Index

B
Baseline Creatinine Imputation

command line option, 4

C
command line option

Baseline Creatinine Imputation, 4
Historical Baseline Trumping, 3
Python, 5, 7, 9, 11, 13–18, 23, 25, 27, 29, 31, 32,

35–38
R, 5, 7, 8, 10, 12–18, 23, 25, 26, 28, 30–32, 35–38
Rolling Minimum Window (default), 3

H
Historical Baseline Trumping

command line option, 3

P
Python

command line option, 5, 7, 9, 11, 13–18, 23,
25, 27, 29, 31, 32, 35–38

R
R

command line option, 5, 7, 8, 10, 12–18, 23,
25, 26, 28, 30–32, 35–38

Rolling Minimum Window (default)
command line option, 3

41

	Introduction
	Methods of calculating AKI

	Installation
	Getting started
	Let’s start off by creating some toy data.
	Example: Rolling Minimum Window
	Example: Historical Baseline Trumping
	Example: Baseline Creatinine Imputation

	Additional Features and Common Use Cases
	 Adding padding to the rolling window
	 Working with different column names
	 Adding in rolling window minimum creatinines
	 Adding in baseline creatinine

	More information
	Introduction
	Installation
	Getting started
	Let’s start off by generating some toy data.
	Example: Rolling Minimum Window
	Example: Historical Baseline Trumping
	Example: Baseline Creatinine Imputation

	Using the GUI
	Additional Features and Common Use Cases
	More information
	Index

